3.25.74 \(\int \frac {(3+5 x)^{3/2}}{\sqrt {1-2 x} (2+3 x)^3} \, dx\) [2474]

Optimal. Leaf size=93 \[ -\frac {33 \sqrt {1-2 x} \sqrt {3+5 x}}{196 (2+3 x)}-\frac {\sqrt {1-2 x} (3+5 x)^{3/2}}{14 (2+3 x)^2}-\frac {363 \tan ^{-1}\left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {3+5 x}}\right )}{196 \sqrt {7}} \]

[Out]

-363/1372*arctan(1/7*(1-2*x)^(1/2)*7^(1/2)/(3+5*x)^(1/2))*7^(1/2)-1/14*(3+5*x)^(3/2)*(1-2*x)^(1/2)/(2+3*x)^2-3
3/196*(1-2*x)^(1/2)*(3+5*x)^(1/2)/(2+3*x)

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 93, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {96, 95, 210} \begin {gather*} -\frac {363 \text {ArcTan}\left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {5 x+3}}\right )}{196 \sqrt {7}}-\frac {\sqrt {1-2 x} (5 x+3)^{3/2}}{14 (3 x+2)^2}-\frac {33 \sqrt {1-2 x} \sqrt {5 x+3}}{196 (3 x+2)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(3 + 5*x)^(3/2)/(Sqrt[1 - 2*x]*(2 + 3*x)^3),x]

[Out]

(-33*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/(196*(2 + 3*x)) - (Sqrt[1 - 2*x]*(3 + 5*x)^(3/2))/(14*(2 + 3*x)^2) - (363*Ar
cTan[Sqrt[1 - 2*x]/(Sqrt[7]*Sqrt[3 + 5*x])])/(196*Sqrt[7])

Rule 95

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 96

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(a + b*
x)^(m + 1)*(c + d*x)^n*((e + f*x)^(p + 1)/((m + 1)*(b*e - a*f))), x] - Dist[n*((d*e - c*f)/((m + 1)*(b*e - a*f
))), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[
m + n + p + 2, 0] && GtQ[n, 0] && (SumSimplerQ[m, 1] ||  !SumSimplerQ[p, 1]) && NeQ[m, -1]

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin {align*} \int \frac {(3+5 x)^{3/2}}{\sqrt {1-2 x} (2+3 x)^3} \, dx &=-\frac {\sqrt {1-2 x} (3+5 x)^{3/2}}{14 (2+3 x)^2}+\frac {33}{28} \int \frac {\sqrt {3+5 x}}{\sqrt {1-2 x} (2+3 x)^2} \, dx\\ &=-\frac {33 \sqrt {1-2 x} \sqrt {3+5 x}}{196 (2+3 x)}-\frac {\sqrt {1-2 x} (3+5 x)^{3/2}}{14 (2+3 x)^2}+\frac {363}{392} \int \frac {1}{\sqrt {1-2 x} (2+3 x) \sqrt {3+5 x}} \, dx\\ &=-\frac {33 \sqrt {1-2 x} \sqrt {3+5 x}}{196 (2+3 x)}-\frac {\sqrt {1-2 x} (3+5 x)^{3/2}}{14 (2+3 x)^2}+\frac {363}{196} \text {Subst}\left (\int \frac {1}{-7-x^2} \, dx,x,\frac {\sqrt {1-2 x}}{\sqrt {3+5 x}}\right )\\ &=-\frac {33 \sqrt {1-2 x} \sqrt {3+5 x}}{196 (2+3 x)}-\frac {\sqrt {1-2 x} (3+5 x)^{3/2}}{14 (2+3 x)^2}-\frac {363 \tan ^{-1}\left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {3+5 x}}\right )}{196 \sqrt {7}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.15, size = 69, normalized size = 0.74 \begin {gather*} \frac {-\frac {7 \sqrt {1-2 x} \sqrt {3+5 x} (108+169 x)}{(2+3 x)^2}-363 \sqrt {7} \tan ^{-1}\left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {3+5 x}}\right )}{1372} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(3 + 5*x)^(3/2)/(Sqrt[1 - 2*x]*(2 + 3*x)^3),x]

[Out]

((-7*Sqrt[1 - 2*x]*Sqrt[3 + 5*x]*(108 + 169*x))/(2 + 3*x)^2 - 363*Sqrt[7]*ArcTan[Sqrt[1 - 2*x]/(Sqrt[7]*Sqrt[3
 + 5*x])])/1372

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(153\) vs. \(2(72)=144\).
time = 0.08, size = 154, normalized size = 1.66

method result size
risch \(\frac {\sqrt {3+5 x}\, \left (-1+2 x \right ) \left (169 x +108\right ) \sqrt {\left (1-2 x \right ) \left (3+5 x \right )}}{196 \left (2+3 x \right )^{2} \sqrt {-\left (3+5 x \right ) \left (-1+2 x \right )}\, \sqrt {1-2 x}}+\frac {363 \sqrt {7}\, \arctan \left (\frac {9 \left (\frac {20}{3}+\frac {37 x}{3}\right ) \sqrt {7}}{14 \sqrt {-90 \left (\frac {2}{3}+x \right )^{2}+67+111 x}}\right ) \sqrt {\left (1-2 x \right ) \left (3+5 x \right )}}{2744 \sqrt {1-2 x}\, \sqrt {3+5 x}}\) \(119\)
default \(\frac {\sqrt {3+5 x}\, \sqrt {1-2 x}\, \left (3267 \sqrt {7}\, \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right ) x^{2}+4356 \sqrt {7}\, \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right ) x +1452 \sqrt {7}\, \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right )-2366 x \sqrt {-10 x^{2}-x +3}-1512 \sqrt {-10 x^{2}-x +3}\right )}{2744 \sqrt {-10 x^{2}-x +3}\, \left (2+3 x \right )^{2}}\) \(154\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3+5*x)^(3/2)/(2+3*x)^3/(1-2*x)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/2744*(3+5*x)^(1/2)*(1-2*x)^(1/2)*(3267*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))*x^2+4356*7
^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))*x+1452*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^
2-x+3)^(1/2))-2366*x*(-10*x^2-x+3)^(1/2)-1512*(-10*x^2-x+3)^(1/2))/(-10*x^2-x+3)^(1/2)/(2+3*x)^2

________________________________________________________________________________________

Maxima [A]
time = 0.92, size = 76, normalized size = 0.82 \begin {gather*} \frac {363}{2744} \, \sqrt {7} \arcsin \left (\frac {37 \, x}{11 \, {\left | 3 \, x + 2 \right |}} + \frac {20}{11 \, {\left | 3 \, x + 2 \right |}}\right ) + \frac {\sqrt {-10 \, x^{2} - x + 3}}{42 \, {\left (9 \, x^{2} + 12 \, x + 4\right )}} - \frac {169 \, \sqrt {-10 \, x^{2} - x + 3}}{588 \, {\left (3 \, x + 2\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)^(3/2)/(2+3*x)^3/(1-2*x)^(1/2),x, algorithm="maxima")

[Out]

363/2744*sqrt(7)*arcsin(37/11*x/abs(3*x + 2) + 20/11/abs(3*x + 2)) + 1/42*sqrt(-10*x^2 - x + 3)/(9*x^2 + 12*x
+ 4) - 169/588*sqrt(-10*x^2 - x + 3)/(3*x + 2)

________________________________________________________________________________________

Fricas [A]
time = 0.39, size = 86, normalized size = 0.92 \begin {gather*} -\frac {363 \, \sqrt {7} {\left (9 \, x^{2} + 12 \, x + 4\right )} \arctan \left (\frac {\sqrt {7} {\left (37 \, x + 20\right )} \sqrt {5 \, x + 3} \sqrt {-2 \, x + 1}}{14 \, {\left (10 \, x^{2} + x - 3\right )}}\right ) + 14 \, {\left (169 \, x + 108\right )} \sqrt {5 \, x + 3} \sqrt {-2 \, x + 1}}{2744 \, {\left (9 \, x^{2} + 12 \, x + 4\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)^(3/2)/(2+3*x)^3/(1-2*x)^(1/2),x, algorithm="fricas")

[Out]

-1/2744*(363*sqrt(7)*(9*x^2 + 12*x + 4)*arctan(1/14*sqrt(7)*(37*x + 20)*sqrt(5*x + 3)*sqrt(-2*x + 1)/(10*x^2 +
 x - 3)) + 14*(169*x + 108)*sqrt(5*x + 3)*sqrt(-2*x + 1))/(9*x^2 + 12*x + 4)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (5 x + 3\right )^{\frac {3}{2}}}{\sqrt {1 - 2 x} \left (3 x + 2\right )^{3}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)**(3/2)/(2+3*x)**3/(1-2*x)**(1/2),x)

[Out]

Integral((5*x + 3)**(3/2)/(sqrt(1 - 2*x)*(3*x + 2)**3), x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 252 vs. \(2 (72) = 144\).
time = 1.48, size = 252, normalized size = 2.71 \begin {gather*} \frac {363}{27440} \, \sqrt {70} \sqrt {10} {\left (\pi + 2 \, \arctan \left (-\frac {\sqrt {70} \sqrt {5 \, x + 3} {\left (\frac {{\left (\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}\right )}^{2}}{5 \, x + 3} - 4\right )}}{140 \, {\left (\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}\right )}}\right )\right )} - \frac {121 \, \sqrt {10} {\left (3 \, {\left (\frac {\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}{\sqrt {5 \, x + 3}} - \frac {4 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )}^{3} + \frac {1400 \, {\left (\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}\right )}}{\sqrt {5 \, x + 3}} - \frac {5600 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )}}{98 \, {\left ({\left (\frac {\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}{\sqrt {5 \, x + 3}} - \frac {4 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )}^{2} + 280\right )}^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)^(3/2)/(2+3*x)^3/(1-2*x)^(1/2),x, algorithm="giac")

[Out]

363/27440*sqrt(70)*sqrt(10)*(pi + 2*arctan(-1/140*sqrt(70)*sqrt(5*x + 3)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))
^2/(5*x + 3) - 4)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))) - 121/98*sqrt(10)*(3*((sqrt(2)*sqrt(-10*x + 5) - sqrt
(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))^3 + 1400*(sqrt(2)*sqrt(-10*x + 5)
- sqrt(22))/sqrt(5*x + 3) - 5600*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))/(((sqrt(2)*sqrt(-10*x + 5
) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))^2 + 280)^2

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (5\,x+3\right )}^{3/2}}{\sqrt {1-2\,x}\,{\left (3\,x+2\right )}^3} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((5*x + 3)^(3/2)/((1 - 2*x)^(1/2)*(3*x + 2)^3),x)

[Out]

int((5*x + 3)^(3/2)/((1 - 2*x)^(1/2)*(3*x + 2)^3), x)

________________________________________________________________________________________